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Abstract 

This paper describes the  DATA-CHASER  Automated Planner/Scheduler (DCAPS) system 
which automated generation  and repair of command  sequences for the DATA-CHASER shuttle 
payload. DCAPS uses  general  Artificial  Intelligence  (AI)  heuristic search techniques, including 
an iterative repair  framework  in  which the system iteratively resolves conflicts with the state, 
resource, and  temporal constraints of the  payload activities. DCAPS  was  used  in the operations 
of the shuttle payload for the STS-85 shuttle flight in August 1997 and enabled a 80% reduction 
in mission operations effort and a 40% increase in science return. 

http://colorado.edu


Problem  Description 
Generating command sequences for spacecraft operations  can be a laborious  process requiring a great deal of 
specialized knowledge. Typically, spacecraft command sets are large, with each command performing a low-level 
task. There are often many  interactions  between  the  commands  relating  to  the state of  the spacecraft. In addition, 
due to spacecraft power  and  weight limitations, the  resources available on-board spacecraft are often scarce. These 
factors in combination make  manual  generation of command  sequences a difficult process. Because of the 
importance and expense of  this process, tools  to  assist in planning and scheduling spacecraft activities are critical to 
reducing the effort (and  hence cost) of mission operations. 

This paper describes a general  system  that  uses  Artificial  Intelligence  Planning  and Scheduling technology  which 
was  used  to automatically generate  command  sequences for the  DATA-CHASER shuttle payload operations. The 
DATA-CHASER  Automated PlannedScheduler (DCAPS) architecture presented supports direct, interactive 
commanding, rescheduling and repair, resource allocation, and constraint maintenance. 

DCAPS implements search algorithms for  two  problems:  initial schedule generation, and  schedule 
repaidrefinement. In initial schedule generation, DCAPS generates a default schedule to perform science 
observations from the null schedule (i.e., an  empty schedule). DCAPS  supports domain specific and  randomized 
initial schedule generation strategies. In  schedule repaidrefinement, DCAPS accepts an existing schedule with 
conflicts (i.e., resource oversubscription, state conflicts, etc.) and performs operations to make the schedule 
consistent with  the spacecraft constraints. DCAPS  implements  this  functionality by using “iterative repair” search 
techniques (e.g., [ 13). Basically, this  technique  iteratively selects a schedule conflict and performs some action in  an 
attempt to resolve the conflict. In iterative repair  mode,  DCAPS  is  naturally  well-adapted for human interaction. In 
this mode, a user  can move, add  and delete activities in order to alter the schedule to their preferences. DCAPS cay.,,,,; 
then be invoked to repair state, resource, and temporal constraints caused by these modifications. Using  an@; 
automated planner/scheduler (e.g., DCAPS) in this fashion, command sequence generation can be performed by 
scientists who  need  not  be spacecraft and sequence engineer experts. This allows the scientist to become directly 
involved in the command sequencing process.  Additionally, if there are changes in  the spacecraft state (e.g., faults) 
or user-defined  goals  (e/gm science opportunities), the  repair  algorithm allows simple rescheduling that attempts to 
minimize disruption of the original schedule. Finally, the  highly restrictive payload resources and constraints are 
constantly monitored  and conflicts automatically  avoided. 

The DCAPS system was  developed for operation of  the  DATA-CHASER shuttle payload, which was  developed 
and  managed by students and  faculty of  the  University  of Colorado at  Boulder.  DATA-CHASER is a science 
payload, with a primary focus on solar observation. The main activities for  the  payload involve science instrument 
observations, data storage, communication, and control of the  power  subsystem. Science is performed using  three 
solar observing instruments: the  Far  Ultraviolet Spectrometer (FARUS), Soft X-ray  and Extreme Ultraviolet 
Experiment (SXEE), and  Lyman-alpha Solar Imaging  Telescope  (LASIT). These are imaging devices that operate at 
various spectra. 

The payload resources include power,  tape storage, local  memory,  the  three instruments, and the communication 
bus.  DATA-CHASER  is also constrained by externally-driven states such as the shuttle orientation and external 
events such as shuttle venting of waste  materials,  which affect when certain science activities can be  scheduled. 
Payload activities must be sequenced  while  avoiding or resolving  The  remainder of this paper is organized as 
follows. First, we describe the  DATA-CHASER shuttle payload  and  mission objectives. Next, we describe how  the 
payload is modeled.  We  then  describe in detail the  DCAPS  approach  to  automated command sequence generation 
and repair. Then, we describe how  DCAPS fits in to  the  overall  flight  and  ground  system architecture for the  DATA- 
CHASER mission. We then describe the experience and results  from  the use  of DCAPS during the STS-85 flight. 
Finally, we discuss related work  and  conclusions. 

DATA-CHASER Payload 
DATA-CHASER consists of two synergistic projects, DATA  and  CHASER,  which flew as a Hitchhiker (HH) 
payload  aboard STS-85 on  the  International  Extreme  Ultraviolet  Hitchhiker  Bridge (IEH-2) in August 1997 [2]. A 
technology experiment, DATA  (Distribution  and  Automation  Technology Advancement) demonstrated advanced 
semi-autonomous, supervisory operations. CHASER (Colorado Hitchhiker and Student Experiment of Solar 



Radiation) was a solar science experiment that  served to  test  DATA. The DATA technologies support cooperative 
operations distributed between different geographic  sites as well as between  humans  and machines, on-board 
autonomy, human control, and  ground automation. 

CHASER consists of three co-aligned  instruments  that  take data in the  far  and extreme ultraviolet wavelengths. 
The first and oldest of these instruments (17 years  old) is FARUS,  which  takes a continuous spectrum from 115 nm 
to 190 nm with a resolution of .12 nm. LASIT takes  images of  the full solar disk of the  sun in the Lyman-alpha 
wavelength (121.6  nm)  with a Charge Injected  Device  imager. The final instrument in the scientific package, SXEE, 
consists of four photometers, each having a different metallic coating so as to enable them to look at different 
wavelengths between 1 and 40 nm. The objective of these instruments is to measure the full disk solar ultraviolet 
irradiance and  obtain images of the sun in the  Lyman-alpha  wavelength,  providing a correlation between solar 
activity and radiation flux as well as an  association of Lyman-alpha fluxes with individual active regions of the sun. 

The flight segment of the  DATA-CHASER  project  consists  of a canister that is equipped with a Hitchhiker 
Motorized Door Assembly (HMDA), which  houses  the  instruments  and  their support electronics. The second canister 
contains the flight computer for the  payload as well as the 2 GB Digital Audio Tape (DAT) drive that  is  used  to store 
all data that is collected during the  mission. The payload data is also sent to  the  ground system through  both  low rate 
(available 90% of the time, at 1200  bps),  and  medium rate (available when scheduled, at 200 kbps). The payload is 
also capable of receiving commands sent from the  ground  system  when  uplink is available. 

During the mission, the  DATA-CHASER  payload  will be operating in four different modes. Most of  the time, 
when DATA-CHASER is powered, it will  be in a passive  mode  where it is monitoring its state and notifying the 
ground of any changes. During the time in  the  mission  when the orbiter is scheduled to point the bay at the sun, the 
DATA-CHASER payload will shift into solar active mode  where  all instruments take data. 

The data is both written to the DAT drive on  board  and  downlinked to the  ground system for immediate data 
analysis. Several times during the  mission,  DATA-CHASER  will take data while  not pointing at the  sun. This data is 
used for testing various portions of the  DATA experiment with  non-solar-pointing data in addition to being used for 
instrument calibration. 

One of the consequences of flying on the shuttle system  is  that shuttle resources are limited, and their availability 
is subject to change every 12 hours. These resources include access to uplink  and downlink channels, and time that 
your payload is allowed to operate. In  addition to these resources, any  given payload may also have environmental 
constraints as to how  much contamination the  payload  can  take.  Another example is thermal constraints, such as 
maximum solar point time. 

STS-85, the flight that  DATA-CHASER  payload is scheduled  to fly on, is one of the most complicated flights that 
the shuttle has flown to date. In  addition  to  the  DATA-CHASER  payload,  there are four other payloads sharing the 
same HH bridge. In  addition  to  the IEH-2 bridge,  there  is  another  HH  bridge, a pallet payload, and a Spartan 
deployable satellite. Needless to  say  the shuttle pointing  requirements are considerably tight. 

In addition to modeling  what  the internal constraints and resources of the  payload are, DCAPS must also search 
the shuttle flight plan for times when  we are  allowed  to operate, downlink our data, uplink  new command sets, and 
when  we have to protect the scientific instruments from contamination events. 

DATA-CHASER is an interesting scenario for scheduling  because of the complex data and power management 
involved in the science gathering. An automated  scheduler  must  find  an optimal “data taking” schedule, while 
adhering to the resource constraints. In addition, the scientists would like to perform dynamic scheduling during the 
mission. As an example, the  summary data may indicate the presence of a solar flare. If this occurs, scientists have 
different requirements and goals,  such as higher priorities on certain instruments or longer integration times. These 
new goals may require a different schedule of activities. 

Modeling  the  Payload 

In order to use  the  DCAPS system, the  user  must  write a software model  of  the mission activities and spacecraft 
resources. DCAPS uses  the Plan-It2 system [4] to  model  the spacecraft activities and constraints, thus the  model  is 
expressed in the Plan-It2 modeling  language.  Modeling in the Plan-It2 language involves defining a set of objects 
and describing how  they interact. These definitions are  then  used  by  the scheduler to create instances of  the objects 
and reason about specific interactions (e.g., state and resource conflicts) in the schedule. The two  major types of 
objects in the  model are activities and resources. 



Activities 
Activities are used  to  model  the events that  affect the DATA-CHASER  payload and  the actions that  the  DATA- 
CHASER payload  can  take.  All activities have  certain  basic  components: a duration, a list  of slots, and a list of slot- 
value assignments. The activity duration is simply a time  range. Slots are parameters of activities that  may represent 
resource usage.  In addition, certain  types of activities (described below)  have a list of subactivities. For these 
activities, the  user  can also define a set of temporal constraints between  the subactivities. Next, we describe in more 
detail the four basic types of activities: events, steps, step-activities, and activities. 

Events are used  to  model activities that  do not occur in a fixed  relation to other activities (e.g. Tracking and  Data 
Relay Satellite System (TDRSS) contacts) and are not part of  an activity hierarchy. 

Steps are the “leaf” nodes in the  activity  hierarchy tree. In  other  words,  they do not contain any subactivities. Steps 
cannot be instantiated  without  their  parents and are used  to  model  the activities at the lowest level of detail. For 
instance, we  model  an activity called  CHASER-heating,  which consists of two steps, CHASER-heater-on and 
CHASER-heater-off. 

Step-activities are used to model activities at a middle  level of abstraction. They  can contain steps, but  must also 
have parent activities. In  DCAPS,  we  model  an  activity SXEE-Data-Take, which models the SXEE instrument 
opening its aperture  and taking a scan. In this case, there  is a step-activity called SXEE-Scan-Step, which has sensor 
read steps and cannot be instantiated by itself. 

Activities are used  to  model activities at the  highest  level of abstraction.  They are the “root” nodes in the  hierarchy 
tree, containing subactivities, but  no  parent activity. An abstract activity inherits all attributes of its predecessors. 
When  an abstract activity is detailed, it is  replaced by its subactivities - showing events and resource usage at a finer 
granularity. The activity and event objects  can be instantiated by the scheduler, and the scheduler can use methods to 
access the  varying levels of abstraction. 

Resources 
Resources define the various physical  resources  and  the constraints they  impose. Resources come in essentially five 
varieties: state, concurrency, depletable, non-depletable, and simple. 

them. For each state resource, the  modeler  must  specify  the  possible  values  that  the state can be. Most of  the systems 
have at least one state variable, which  is  whether or not  they are activated. The orientation of the payload is also 
modeled as a state variable. 

Concurrency resource constraints are used  to  model  rules  that stipulate that an activity either must occur during 
another activity or cannot occur  at  the same time as another activity. One relationship that is  modeled  with a 
concurrency resource is  the requirement that a downlink or uplink  can  only  occur during contact with a TDRSS 
satellite. This is  modeled as a resource  that is present when there is TDRSS  contact activity and required when there 
is a downlink or uplink activity. 

Depletable resources are used  to  model  resources  with a fixed quantity,  such a fuel or RAM. Activities can  use 
some finite amount of a depletable resource, which  may or may  not be restorable. The amount used  by the activity is 
persistent to  the  end  of  the schedule. In addition,  the  modeler  must  specify a maximum capacity for each depletable 
resource. In  DCAPS, RAM is  modeled as a depletable resource. Science observations produce data and  use some 
amount of  the depletable resource. Other activities, such as a transfer  to  permanent storage, may restore this 
resource. 

Non-depletable resources are used  to  model  resources  with a limit  to the  usage at any one time, but are reset at the 
end  of  the  activity  that consumes the resource. Similar to depletable resources, nondepletables are assigned a 
maximum capacity. Resources like  power  are  modeled  with  non-depletable  resources. 

Simple resources are used to model devices that can only be used by one  activity at a time. For instance, each of 
the instruments on board  DATA-CHASER,  FARUS,  SXEE,  and LASIT, are capable of taking only one image at a 
time  and are modeled  with simple resources. 

The DATA-CHASER  model is fairly  large,  containing 67 resources and 58 activity  types. The payload  required 7 
resources to  model  the impact of exogenous  events  such as shuttle contamination events, dayhight cycles, shuttle 
maneuvers, and other external activities which impact  payload operations. The payload also required 6 resources to 
represent possible  failed states for major instrumentshbsystems. For each  instrument, a number of resources would 

State resources are used to model  the  systems in the  DATA-CHASER  payload  that  have states associated with t 



be required. For example, for SXEE, there are 6 resources.  One  resource represents the instrument itself. Two 
resources are required  to represent the  instrument  door - one  for  the  operdclosed state and another for  the closing 
process which draws power. A SXEE-failure resource  represents if the instrument is  known to have failed (and 
hence disables the scheduler from  scheduling  any  SXEE activities). A SXEE-power resource tracks  the power 
consumption of the SXEE instrument, and a SXEE-relay  resource  models  the hardware relay  used  to enable/disable 
the SXEE instrument. In addition to the instruments, there  are a number of system-wide resources to  be  tracked by 
DCAPS. Total power consumption  and  energy  usage  (for  thermal considerations) are tracked for each canister. 
Finally, science and engineering data must be processed  through a set of 3 buffers onboard the spacecraft as well as 
the secondary storage DAT tape  drive. 

The DATA-CHASER  model also contained a significant  number of activity types (58). Of these the  vast  majority 
(25) were hardware control commands. Fourteen  commands  related  to  acquisition of science and engineering data, 
and 6 commands controlled the  downlink capability (TDRSS, medium-rate, and low-rate). Nine (9) commands were 
used to represent possible subsystem failures (e.g., to disable use  of certain instruments and subsystems). Seven (7) 
activities were used to represent exogenous events (such  as  medium rate downlink coverage, solar.pointing for the 
shuttle bay, etc. The activities can also be viewed  from an instrument centric perspective. From  this viewpoint, the 
SXEE instrument has commands to: transfer SXEE data from  the SXEE instrument to the general instrument buffer, 
so open  and close the SXEE instrument door, to control the SXEE-relay which enables use of the instrument, to take 
a data scan, to take a dark scan (with the instrument door  closed for calibration purposes), and  two macro-commands 
which each perform several of the  typical steps to take  and  transfer image to storage. 

Use of AI  Technology:  The  DCAPS  Automated  PlannedScheduler 
The DATA-CHASER Automated Planner / Scheduler was  part of the  DATA-CHASER  mission operations software. 
It was a ground-based intelligent tool  used  for  developing a schedule of commands for uplink to the payload [3]. 
There are two phases  of operating the  DCAPS  system:  initial schedule generation and interactive repair phase. 

During initial schedule generation, DCAPS  produces a complete, valid schedule of payload operation commands 
from a model, initial state, and set of high-level  goals. In the interactive repair phase, it takes intermediate, invalid 
schedules (resulting from user changes) and  produce a similar, but  valid schedule. 

The planner/scheduler consists of  two  main parts, the Plan-IT I1 (PI2) sequencing tool [4] and  the schedule 
reasoner (see Figure 2). PI2 was  written by William C. Eggemeyer  and originally designed as an “expert assistant 
sequencing tool.” PI2 includes a GUI that allows for easy  manipulation of the schedule. In addition, it serves as an 
activity/resource database that supplies valuable  information  to  the schedule reasoner. PI2 supports complex 
monitoring and reasoning about activities and  the  various constraints between them. The schedule reasoner uses 
Artificial Intelligence (AI) techniques to automatically generate new schedules, repair existing faulty schedules, and 
optimize valid schedules. PI2 provides information  about  resource availability and conflicts; the scheduler must 
decide which activities to use  to resolve the conflicts and where  to  place  the activities temporally. Plan-It2 and  the 
schedule reasoner work together to provide fast, easy  sequencing of mission activities. 

Schedule  Data-Base 
In the  DCAPS system, PI2 is  used  primarily as a “schedule database” and resource constraint checker. It was 
originally developed as a graphical sequencing tool.  Activities and resources are displayed on a graphical output. An 
activity represents some mission event that occurs over a period of time and uses some of  the mission resources. A 
resources represents some limited available material  whose  usage  is  modeled as discrete blocks over time. 

For each type of activity and resource, PI2 displays a timeline,  which represents the behavior  of  that 
activity/resource type over a period of time.  When  activities  are created, they are placed at a specified time on  the 
timeline. Resources used by that  activity are updated to reflect the additional usage.  In addition to schedule 
visualization, PI2 provides an easy-to-use interface for  modifying  the schedule. Moving activities is as simple as a 
click-and-drag with a mouse. 

PI2 helps ease the  burden on sequencers by continually  monitoring  all activities in  the sequence. As activities are 
added or moved, the change in resource usage is automatically  updated, and  the  new resource profiles are displayed. 
With this information available, the  user  can  immediately see the effects of a schedule change on  the  mission 
resources. For each resource, PI2 also monitors  any conflicts that  are occurring on  the resource. 

Conflicts are time intervals where  the limitations of  the resource  have  been exceeded. These conflict intervals are 
highlighted in red  to flag their existence for  easy  identification. Finally, PI2 monitors  any dependencies that  have 



been defined between activities and resources. The  values of specific parameters of activities and resources may be 
functionally dependent on values of other  parameters.  PI2  automatically  keeps  these parameter values consistent. 

PI2 also helps  out by serving as an  activity and resource database, producing/accepting information to/from a 
sequencer. The functional interface to  PI2 has  been extended  to  better  assist  an  automated sequencer. A basic set of 
“fetch” functions  have  been  developed  to  quickly  retrieve  information  about conflicts and the resources and activities 
involved in the conflict. For example, an  interface  function  has been written  to  fetch  the  legal times where an activity 
can occur in  the schedule. Here, “legal times” refers to positions  where no conflicts are caused by  any  of  the 
resources used by the  given activity. 

In  addition  to fetching information  about the current state of  the schedule, the  user  will  need to be able to change 
the current state in attempt to  fix or optimize the schedule.  Some  basic  primitive functions are provided by PI2 to 
allow an external system to  add  and  move activities, change  their duration, etc. These primitives make up  the set of 
actions that a scheduler can take when trying  to  resolve conflicts. 

Schedule Reasoner 
The second major component of DCAPS  is  the  automated  schedule reasoner. The schedule reasoner provides two 
capabilities: initial schedule generation, and  schedule  repair.  In  initial  schedule generation, a schedule is  generated 
from a set of user requested activities. In  schedule  repair,  the  scheduler  will automatically restore the consistency of 
the sequence after arbitrary user  interaction by rescheduling  using  repair actions. The scheduler repairer iteratively 
attempts to resolve each conflict, which  involves  making choices on  what  to repair and  how to repair it. 

Zniriul Schedule Generator-The first step in sequencing spacecraft commands  is  to come up  with an initial schedule 
of events for each phase of the mission.  This  process  has  been  partially  automated  in DCAPS with  the schedule 
generator. Expressing schedules and partial schedules to be generated  is done through user defined goals. There are 
two ways in which  user goals are handled in DCAPS. First, initial science and engineering goals are handled  with 
parameterized scheduling functions. Each function  implements a goal. For example, there is a “Place-Power” 
function that schedules power switching activities in appropriate  places  based on some engineering parameters. 
Parameters may include such things as a minimum  time  between  switching,  or a power  on during a particular state of 
a different resource. 

Second, science goals can also be expressed  through data-take requests, which do not have to be a part of  the 
initial schedule generation.  For example, a scientist can  request  ten  additional scans from a particular instrument to 
occur any time during some phase of the  mission.  This  type of general  request does not include specific locations or 
necessary supporting activities. The scheduler  will  simply  place  them at random  positions  and allow any conflicts to 
be resolved by the automated repairer. 

DCAPS supports two  modes for automated  initial  schedule  generation: a domain specific schedule generation 
algorithm and a randomized scheduling algorithm. The domain specific scheduling algorithm is shown below. In 
this approach, we the scheduler insert necessary setup activities (powering on  the  payload  and controlling the  payload 
doors) and schedules an even mix  of  observations by sweeping  forward in time. However, little effort was  devoted 
towards optimizing this approach. 

buildInitialSchedule() 
turn  on  the  two canisters 2 hours into the  mission 

and  leave  them on for the  duration (cmds DataRelayOn,  ChaserRelayOn) 

for each interval in which  the shuttle is pointing  at  the  sun and there is  not a contamination event 
open  the  hitchhiker door (HMDAOpen) at  the  start  of  the  interval 
close the hitchhiker door (HMDAClose) at  the  end  of  the  interval 

for each interval in which  the shuttle is not  in a solar pointing state for  longer  than 30 minutes 
turn on the canister heater 30 minutes after the solar pointing 
turn  off  the canister heater at the  beginning of  the  next solar pointing  interval 

place farus, sxee, lasit data-takes 
loop until cant no legal times for alldatatake 



find  legal times for alldatatake (during the solar pointing non contamination events) 
place alldatatake at earliest possible start time 
place a DAT transfer after the data-take 

DCAPS also supports a randomized  initial schedule generation  algorithm. In this approach, the scheduler merely 
uses  random placement to attempt to  place science observations. As expected, this approach performs significantly 
worse  than  the domain specific approach. 

Schedule Repairer-The generated initial schedule may still violate  some of the spacecraft constraints. Also, the 
scientists and engineers might feel that their goals  were not completely satisfied or that  they  could  be better achieved 
by an alternative plan.  In these cases the  users  want to be able to interact  with  and  modify  the generated schedule. 
These modifications may introduce new conflicts into  the schedule. The schedule repair capability can automatically 
repair these introduced conflicts, freeing the  user from this  burden  and reducing overall mission operations effort. 
Additionally, freeing the  user of this  burden of lower-level repair, allows  the  user to spend more time modifying the 
schedule - allowing the combined user/software  system  to explore more of the schedule space. 

Before describing the schedule repairer, we  must  present a few definitions. A “conflict,” is a violation of one of 
the resource constraints. A conflict occurs over a certain time  period  and  is  caused  by activities called “culprits.” For 
example, if the power capacity is exceeded from time t l  to  time t2, then a conflict exists from time t l  to time t2,  and 
the culprits are any activities that  use  power during this  time (see Figure 3). 

1-1 Cu lp r i t s  
There are three possible actions to take in attempt to 

resolve a conflict: move, add, or delete an activity. The 
“move”  action involves moving one of the culprits of 
the conflict to a position that will either resolve the 

Conf l ic t  conflict or at least ensure that the  moved activity is no 

adding a new activity. These activities usually provide 
some  resource  that  was previously not available. 
Finally, a conflict can also be resolved by simply 
deleting the culprits. This is  obviously  not a preferred 
method  and  is  only  used  as a last resort: 

The resolution of a conflict greatly depends on the 
type of resource  that  is in violation. There are five 

different types of conflicts corresponding to  the five types of resources. A state conflict occurs when  an activity 
requires the resource to  be in a state other than  its current state. The culprits in this  type of conflict are all  of the 
activities that require the incorrect state and  the  activity  that  changed  the resource to  the incorrect state. Several 

t”-i 
Power .capacf.ty.“ -.......... ................. ” ........... longer a culprit. Some conflicts can be  resolved by 

Figure 3: Conflicts 

ResolveConflicts (max-iterations) 
( 

iterations = 1 

Loop while conflicts <> ( ) && 
iterations <= max-iterations) 

select a conflict 
select a method for resolving a conflict 

case move 
(move, add, delete) 

select culprit to move 
select time to move culprit 

select activity to  add 
select start time for new  activity 

case delete 
select activity to delete 

if no-progress  then UndoLastAction() 
iterations := iterations + I 

case add 

“_,”,__,_.___I -” 
I 

Figure 4: Iterative Repair  Algorithm 

k..’ 

possibilities for resolving a state conflict include 
moving  the culprits to another interval where  the 
required state is present or adding an activity that  will 
change  the state of the resource to the required state. 

A concurrency conflict is when  an activity requires 
the  presence of the resource during a time for which it is 
absent. The culprits in this  type of conflict are all of the 
activities that  require the presence of  the resource. To 
resolve a concurrency conflict, the scheduler can  move 
the culprits to  an interval where the resource is  present 
or add  an  activity  that provides the presence of the 
resource. 

A depletable conflict means that  the activities of the 
schedule have  used  too  much  of  the resource. In  this 
type of conflict, the culprit is  the activity that  caused  the 
resource to overflow during the  time  that it first 
overflows. Some depletable resources have “resetter” 
activities and this sort of conflict can be resolved by 



adding an activity  that “resets” the available resource. For example, a downlink  activity  will free up space in the 
downlink buffer. A non-depletable conflict is  when activities  overuse a resource  during a particular time interval. 
The culprits in this  type of conflict are all of  the activities  that use  the resource  during  the conflict interval. This sort 
of conflict can be resolved by moving or deleting culprits. There are no activities in the DATA-CHASER model  that 
can add  to a non-depletable resource. 

Simple conflicts occur when two or more activities use  the same simple resource  at  the same time. This type of 
conflict can  only be resolved by moving culprits. 

Given an  initial schedule, the  schedule repairer must  find  the correct activities  to  move, add, or delete and  position 
them  temporally in such a way that no conflicts remain.  The scheduler relies on some interface functions to PI2 that 
describe the conflicts in the current schedule, describe the activities that  could  resolve a conflict, and manipulate the 
schedule. The schedule repair algorithm is  an iterative loop  over  the conflicts in the schedule (see Figure 4). First, 
the repairer must select a conflict to attack. Next, a method for resolving  the  conflict  is chosen. Depending on  the 
conflict type,  there  may be  up to three  methods  for  attacking  the conflict: move, add, and delete. If “move” is 
chosen, then a culprit must be picked  from  the  list of culprits in the  conflict. A duration  and start time are chosen for 
the culprit, and  the culprit is  moved to the new location. If “add” is  the  chosen  method,  then  the repairer must decide 
which activity type to instantiate. Again, a duration  and start time  must  be  chosen  for  the  new activity, and  the 
activity is inserted at the  chosen  time. If the repairer chooses to “delete” an activity, then it simply must choose an 
activity to delete, and delete it. After the  chosen  action  is  performed,  the  schedule repairer checks to see if progress 
was  made. We define progress as either decreasing the  number of conflicts, decreasing the number of culprits, or 
decreasing the duration of  the conflicts. If the  action  did not succeed in resolving  the conflict, or progress was  not 
made, then  the action is  “undone.” Otherwise, the  new set of conflicts are found,  and  the loop counter is incremented. 
This process continues until  all conflicts are resolved, or the loop  counter  exceeds a user-defined  maximum  bound. 
For every choice point  in  the algorithm, where a selection  must be made  from a list of possibilities, the schedule 
repairer is  allowed  to  backtrack to that  point.  What  this  means is, that if a particular choice fails, the schedule 
repairer may choose another from the list before  giving up.  If all choices fail, then a previous decision must  have 
been incorrect, and  the repairer can backtrack to  the  preceding choice point.  All choice points, including the decision 
on whether or not  to backtrack, are heuristic decisions  and may customized to a particular domain. 

Thus, there are several choice points in  the  repair  algorithm  which  are  relevant for heuristic guidance: 1.  conflict 
selection, 2. selection of  move,  add, or delete, 3. selection of an  activity to with  which to move add or delete, and 4. 
Temporal placement  of  the a moved or added  activity.  Below we outline  the  heuristics implemented within DCAPS, 
in each case we  highlight the heuristic method  used by  an asterisk. 

Move  lowest  priority 

Add  the activity  which  has  the fewest legal times 
Add highest  priority 

Delete  the culprit which participates in most 

For Add operations Add activity  that  reduces conflict most* 

For Delete operations Delete culprit that  contributes  most to conflict 

Delete  lowest  priority 

Choose earliest start time 
Choose  latest  start  time  for state conflicts and 
earliest start time  for  resource conflicts* 

Time selection Choose  latest  start  time 



Schedule Optimization - Often  there may  be  many  legal schedules all of  which are not equally preferred by the 
users. In the extreme case, the  empty  schedule (e.g., do nothing, or some schedule of this form) is usually a legal 
schedule. In  the  DATA-CHASER  mission, the dominant  quality  measure is science return - which can be roughly 
measured by the  number of science measurements  taken and downlinked in the current planning cycle. In order to 
improve the quality of the  DCAPS-produced schedules, we implemented a simple schedule optimization algorithm 
which accepts as input an oversubscribed schedule. This algorithm first expands all of the activities in to the  lowest 
level (because the  most detailed resource  modeling may allow a more  densely  packed schedule). The algorithm then 
performs a forward sweep through  the  schedule in which  each activity is  moved  to its earliest start time. This has the 
effect of packing the activities towards  the start of  the  schedule  potentially opening room for the extra activities 
towards the end. In  the  DATA-CHASER case, the  oversubscribed activities are science data-takes and  the 
oversubscription is due to over-use of the  instrument, communications bus,  and  buffer resources. The schedule 
optimization algorithm takes an  oversubscribed schedule and packs in the science observations more closely - thus 
allowing further science observations to fit  into  the schedule. This optimization algorithm can be  viewed as a 
simplified version  of  the schedule packing  described in [ 151 and  the doubleback algorithm described in [ 161. 

Application  Development,  Deployment,  and  System  Integration 
DCAPS  was developed by the JPL Artificial Intelligence group as part of a set of early prototypes of automated 
planning and scheduling engines for  use by NASA’s  New Millennium Program. Later, when  the DATA-CHASER 
mission operations automation problem was studied, we determined  that  the iterative repair capabilities of DCAPS 
would  be  well suited for mixed-initiative partially  automated,  human in the  loop, shuttle payload operations. At  this 
time DCAPS was  modified to meet a number of minor  user interface requirements and  the DATA-CHASER model 
was constructed over a series of software spirals with each model  increasing in coverage and fidelity. The total JPL 
AI Group effort involved  in the development of  DCAPS  and initial modeling  was approximately 1.4 work-year. The 
total effort by CSGC to deploy the  DCAPS  system  was  on  the order 0.4 work-years. 

DCAPS was integrated into the  End-to-End  Mission Operations System (EEMOS) used for the DATA-CHASER 
portion of the STS-85 payload. This EEMOS architecture is also being evaluated as part of the Fire and Ice pre- 
project [6]. The DATA-CHASER EEMOS  consisted of seven parts: Command  and Control, Fault/Event Detection 
Interaction Reaction (FEDIR), DATMO (Data handling),  the  Ground Database, the Graphical User Interface, the 
software testbed, and finally the  planning  and  scheduling  system  (DCAPS). 

The command and control language used,  System  Command Language (SCL, also known as Spacecraft Command 
Language), integrates procedural programming  with a real-time, forward-chaining, rule-based system. DCAPS 
interfaces with SCL through DATMO by sending script scheduling commands  to be scheduled either on the flight 
or ground system. This interface is implemented by mapping PI2 activities to SCL scripts that were written prior to 
flight and can be scheduled or event-triggered by activating  rules. A list of these scheduling and rule activation 
commands are then sent to DATMO which forwards the  list to the SCL Compiler. Once compiled, the list is  sent to 
the payload through  the  next available uplink. 

DCAPS is also interfaced with  the  ground  EEMOS database, 0 2 .   0 2  is  an object-oriented database used  to store 
all mission data and telemetry that  is  downlinked by  the payload. 0 2  also stores a command history. Through 
DATMO, DCAPS requests current payload status data in the form of sensor values in the telemetry history. It also 
requests lists of all commands uplinked  during a given  time interval. These are used by DCAPS to infer command 
completion status as well as to get the  current state of the  payload so that a new schedule can be created. 

During mission operations, approximately  every  six  hours , DCAPS  was  asked by an operator to generate script 
scheduling commands and rule activations for  the  next  six  hours  according  to its schedule. Once this  list  was 
generated, it was  reviewed by the  Mission  Operations  staff on duty. When judged to be correct, scheduling and rule 
activation commands would be sent  to DATMO during  the  next available uplink  window. 

If during that  six  hour  period  there  was a major  change in the  NASA activities, the operations staff could use 
DCAPS  to  update  the schedule script on-board.  If so desired, DCAPS  could generate an  updated command list, ask 
the user to verify it, and  send  the  list  to DATAAO  to  be uplinked. 

Application Use and Payoff Impact  and  Results  from  Use  During STS-85 
Unfortunately, difficulties were  encountered  during the development and integration of the real-time DATA- 
CHASER flight software. Due  to  these difficulties and  hard shuttle payload  delivery constraints, the real-time 



onboard  command execution software for  the  payload  did  not  have several capabilities which  were originally 
designed. First, the  onboard software was  unable  to  command  the SXEE and LASIT instruments. Second, the 
onboard software did  not  have  the capability to store and execute  time-tagged  command  loads,  thus all operations 
had  to  be carefully synchronized  with  real-time  shuttle uplink windows. Third, the  onboard  tape storage device 
(DAT) was  not functional. This meant  that data storage was limited to the  onboard  solid state buffers. However, 
since the LASIT instrument was  the  most significant producer of data by over  an order of magnitude  this  was not a 
major  problem. The first and  second limitations described  above  meant  that  having  an automated planning system to 
automatically coordinate the  complex  timing constraints was even  more important; manually attempting to enforce 
such timing constraints would increase the  chance of operator error causing a loss of data. Likewise, being able to 
replan quickly and automatically when shuttle activities  changed  (such as downlink or uplink windows) was also 
critical. 

Carrying the  DATA-CHASER  payload, STS-85, the Space Shuttle  Discovery  launched 7:41AM PST on Thursday 
August 7, 1997. Mission operations, including mission  planning and scheduling  were  performed for the 2 week 
flight. During  the first 5 days of DATA-CHASER  operations,  DCAPS was  used in manual  mode. In this  mode 
activities were  placed  manually  and  DCAPS  was  used  to:  validate constraints, identify constraint violations,  and to 
generate the actual command files. During the  last 7 days of the  payload operation, DCAPS  was  used  to 
automatically generate schedules. In  this  phase  the  domain  specific  initial schedule generator was  used  to generate 
an initial schedule.  Due  to  network  lag  times  (DATA-CHASER was operated  primarily from Colorado Space Grant 
and due to machine shortages DCAPS  was  running at JPL)  use of the iterative repair techniques were somewhat 
limited. However, this  turned  out  not  to impact operations significantly, in  many cases minor conflicts were repaired 
manually. 

The DCAPS automated scheduling capability significantly  impacted  DATA-CHASER mission operations. 
DCAPS enabled  an  80%  reduction in the amount of effort to  produce operations plans. Manual generation of a 6- 
hour operations plan  would require from 30 to 60 minutes in manual  mode of operations and from 7-9 minutes using 
the DCAPS automated scheduling capability. This reduction in effort is because  DCAPS can automatically generate 
an acceptable or near acceptable schedule very  quickly.  The  number of modifications  (if any) to make a DCAPS 
generated schedule acceptable can be made far faster than manually generating a schedule from scratch. DCAPS 
also enabled a 40% increase in science return. Manually  generated  plans  had 2-3 instrument scans per viewing 
opportunity whereas  DCAPS  generated  plans had 3-4  scans  per  viewing  opportunity. This is because DCAPS  could 
directly monitor  and track all of  the complex timing  constraints  involved in  the instrument activities and  pack 
activities more  tightly  than operators manually  placing  instrument activities. During this 7 days of DCAPS 
automated use,  DCAPS  scheduled a total  of 93 science scans and 202  payload  commands. 

One significant feature of  the  DCAPS  system  is  its  declarative  representation  of flight rules and spacecraft 
constraints. This feature was  tested during the STS-5 flight in the  following  manner.  When initial command 
sequences were  uplinked, a number  of  commands  immediately  following a reset command were rejected by the 
flight software. This was due to  the fact that  the  initial  flight  rules  were constructed with the understanding that 
immediately following a reset, commands  could be issued  to  the  payload.  Actual opeations showed  that a delay of 
30 seconds was  needed  before  the  payload  could  accept  commands.  When  this  problem  was  noticed  and isolated, it 
was a simple manner to quickly  update  the  DCAPS  model  to  require  this  delay so that future command sequences 
would execute without  problem. This aspect of ease of modification is  key  in that spacecraft characteristics and 
operating procedures constantly evolve throughout  the  mission  lifecycle as the spacecraft characteristics and  mission 
priorities evolve. 

Maintenance: Maintenance of the  DCAPS software system  beyond  the STS-85 flight is  not  an issue because  there 
are limited plans  for  DCAPS  beyond STS-85. DCAPS  was  used  to demonstrate the applicability of planning  to 
generating mission  plans for evaluating difference science experiment strategies and for evaluating the impact of 
alternative hardware designs on science return [ 171. Plans  for  the  current CSGC mission (called Citizen Explorer, or 
CX- 1) are to  use  the ASPEN [IS] planning and scheduling  system  for  mission operations automation. ASPEN  is  the 
planning and scheduling system more  recently  developed by the  JPL Artificial Intelligence Group and incorporates 
many  design enhancements and  lessons  learned from the  DCAPS  experience. 

Summary  and  Related Work 
Iterative algorithms have  been  applied to a wide  range of computer science problems  such as traveling salesman [7] 
as well as Artificial Intelligence Planning [8,9,10,1 I] .  Iterative  repair  algorithms  have also been  used  for a number 



of scheduling systems. The GERRY/GPSS system [ I ,  121  uses iterative repair with a global evaluation function and 
simulated annealing to schedule space shuttle ground  processing activities. The Operations Mission Planner (OMP) 
[ 131 system used iterative repair in combination with a historical  model of  the scheduler actions (called chronologies) 
to avoid cycling and getting caught in local  minima.  Work by Johnston and Minton [5] shows how  the min-conflicts 
heuristic can be  used  not  only  for scheduling but for a wide range of constraint satisfaction problems. The OPIS 
system [ 141 can also be viewed as performing iterative repair. However,  OPIS  is  more informed in the application of 
its repair methods in that it applies a set of analysis measures to classify the  bottleneck  before selecting a repair 
method. 

In summary, DCAPS represents a significant advance  from several perspectives. First, from a mission operations 
perspective, DCAPS is important in  that it significantly  reduces  the amount of effort and knowledge required to 
generate command sequences to achieve mission  operations goals. Second, from the standpoint of Artificial 
Intelligence applications, DCAPS represents a significant application of planning  and scheduling technology to the 
complex, real-world problem  of spacecraft commanding. In particular, significant quantitative improvements in 
operations efficiency were documented during the STS-85 flight. Third, from the standpoint of Artificial 
Intelligence research, DCAPS  mixed initiative approach to initial schedule generation, iterative repair, and schedule 
optimization represents a novel approach.to solving  complex  planning and scheduling problems. 
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